
Web Applications With Maypole

Simon Cozens

Web Applications With Maypole
by Simon Cozens
Copyright © 2005 Simon Cozens

Table of Contents
1. Basic CRUD Sites .. 1

The Scenario .. 1
Writing the "driver" ... 2
Configuring Apache .. 2
What we get ... 3
Behind the scenes .. 3
Exercises ... 4

2. Maypole basics .. 6
Important concepts .. 6

Maypole request ... 6
Maypole action ... 7

The scary stuff with the model class .. 8
The Maypole workflow .. 9
The Maypole request object .. 10
Template Selection .. 11
Configuration ... 11
Review of workflow .. 12

3. Class::DBI primer ... 13
Basic operation ... 13

CRUD .. 13
Relationships .. 14

Plugins .. 15
CDBI::mysql .. 15
CDBI::Loader .. 16
CDBI::Loader::Relationship .. 16
CDBI::Pager .. 16

4. Template Toolkit Primer ... 18
Basic templating ... 18
Includes, Macros, Plugins, Filters ... 19

Includes .. 19
Macros .. 19
Plugins .. 20
Filters ... 20

TT within Maypole .. 21
5. Developing web applications with Maypole .. 22

Maypole best practices ... 22
Start from scratch .. 22
Authentication .. 23
Other random tips ... 24

Listings ... 25
SQL Schema .. 25
CSS .. 26

iv

List of Figures
1.1. Supporters database ... 1
2.1. Maypole workflow (from space) .. 6
2.2. Model class inheritance .. 8
2.3. Maypole workflow .. 9
3.1. has_a versus has_many .. 14

v

List of Tables
1.1. The classmetadata hash ... 4
2.1. $r .. 10
2.2. Maypole configuration hash .. 11
4.1. Template variables .. 21

vi

Chapter 1. Basic CRUD Sites
The Maypole web application framework can be used on two levels: first, as a simple way to add an in-
terface to a database (and not much else besides), and second, as a toolkit for building more sophistic-
ated web applications. In principle, there is a continuum of possible usages between these two levels, but
it seems best for the purposes of teaching to entirely separate them.

In the first part of this tutorial, we're going to quickly dispatch the first level of operation, putting a
front-end onto a database. Not only is this useful in its own right in many cases, it both gives a demon-
stration of the power and flexibility of Maypole, and provides a useful basis for showing how Maypole
applications can be expanded.

The Scenario
As many of you know, I'm not really a Perl programmer any more; instead, I'm a missionary. It's a bit of
a strange job, since I don't actually get paid, but I get funded by various supporters. I have a very bad
memory, and need to be reminded who my supporters are, how much they pay me, and how I need to
get in touch with them to let them know what I'm doing and how their money is being used.

This sounds like the ideal job for a little relational database, and so I drew up the following schema:

Figure 1.1. Supporters database

CREATE TABLE supporter (
id integer auto_increment primary key,
title varchar(5),
first varchar(30),
last varchar(50),

1

email varchar(255),
address text, email_newsletter integer(1),
written_newsletter integer(1)

);
CREATE TABLE gift (

id integer auto_increment primary key,
supporter integer,
amount decimal(6,2),
gifted date

);

CREATE TABLE regular (
id integer auto_increment primary key,
supporter integer,
amount decimal(6,2),
recurrence integer,
started date

);

CREATE table recurrence (
id integer auto_increment primary key,
name varchar(255),
basic_method varchar(255),
every integer

);

Now, to add and update supporters, what do I do? I don't really want to type in SQL all the time, so I
wanted a web front-end to this database. This is where Maypole comes in.

Writing the "driver"
We're going to start with a very, very basic Maypole application, and then build it up to be a little more
sophisticated. Here's the bare minimum we need:

package Supporters;
use Maypole::Application;
Supporters->setup("dbi:mysql:supporters");
Supporters->config->{uri_base} = "http://localhost/supporters/";
Supporters->config->{template_root} =
"/home/simon/maypole-sites/supporters/templates/";

Supporters->config->{loader}->relationship($_) for (
"a supporter has many gifts",
"a supporter has many regulars",
"a regular has a recurrence"

);
1

This should be reasonably self-evident: we say that we're a Maypole application, set up the database
DSN we want to use, tell the application where we're going to live on the web, and where our templates
are going to be, and then define some relationships: a supporter gives one-off gifts and regular gifts, and
a regular gift has a recurrence relation to tell us how regular it is.

The actual version I use has a few more niceties to make it work more smoothly, but we'll come to those
in time.

Configuring Apache

Basic CRUD Sites

2

Now we have the Perl module which is going to drive our Maypole application, we next need to tell
Apache about it. First if we haven't installed this driver module and it's not sitting in Perl's @INC, then
we need to tell Perl where to find it:

<Perl>
use lib qw(

/home/simon/maypole-sites/supporters/
);

</Perl>

And next we have to associate the driver with a location:

<Location /supporters>
PerlHandler Supporters
SetHandler perl-script

</Location>

Almost finally, we need to put Maypole's factory templates where we said we would:

% cp -r ~/maypole/templates/factory /home/simon/maypole-sites/supporters/templates/

And finally, we restart Apache. Now on going to the relevant URL, we should have an application up
and running...

What we get
Those few lines of code have actually got us a long way. Here we can add and edit rows in the database,
view relationships between various rows, and delete entries. Each table has a set of pages: view, list,
edit, delete and so on.

For the supporters database project, I didn't actually need anything else - I just needed the ability to put
rows into the database and see what was already there. For quick applications like this, Maypole is ideal.
But Maypole comes into its own when you start to add "actions" to the application - for instance, if I
wanted to have a page which totalled all donations from different sources, then I'd have to start writing
some code. We'll see how that works in the next few chapters.

Behind the scenes
Warning

This is an advanced section which we're not going to go into during the tutorial, but which
explains, for your benefit when rereading these notes afterwards, how all of this works.
This should help you to learn about the continuum of Maypole applications, and how to go
from simple application like this to the more complex application we see in the second part
of the tutorial - that means this isn't going mean very much on the first reading. I'd encour-
age you to read all of the tutorial notes through before coming back to this; it'll make much
more sense that way.

On the other hand, if you feel you understand everything so far and you're bored during the
tutorial and want something to read, feel free to dig into this more challenging material.

Basic CRUD Sites

3

So far we've just told Maypole about a database and its relationships, and it's come up with a reasonably
useful web application all on its own. How?

There are three factors here: first, database introspection. Maypole's view class provides a lot of
metadata about the selected model class to the templates. The classmetadata template variable is a
hash, which contains the following elements:

Table 1.1. The classmetadata hash

Name Description

name The Perl class name of the model class

table The name of the database table

columns A list of the columns we're allowed to display on this ta-
ble

colnames A mapping between the column names and the same
names formatted better for display

related_accessors Method names of the accessors of any has-a relationships

moniker / plural_moniker A "display name" for this model class. (e.g. "supporter"
and "supporters")

cgi A hash of HTML elements to be used in constructing
forms for this table

From this set of metadata, you can construct a set of templates which do the right thing for pretty much
any table. For instance, this template snippet:

[% FOR col = classmetadata.columns %]
<p> [% classmetadata.colnames.$col %] : [% object.$col %] </p>
[% END %]

will list all the columns of a database row along with the value for this particular object.

This brings us to the second phase in the CRUD strategy: Maypole comes with a sufficiently generic set
of templates (called the "factory templates") for the CRUD operations we've been using so far; it uses
the class metadata to produce pages which look right for whatever shape of database you throw at it.

To finish off the process, there are default actions in each Model base class (for instance, May-
pole::Model::CDBI for the default, Class::DBI-based applications) which use the CRUD
methods of the underlying data representation to perform the appropriate edit, delete, or whatever ac-
tions. So actually, there are a lot of actions going on - both templates and code - but they're squirreled
away inside the default model class.

Exercises
Exercise 1. So far we've got a web application which can handle relationships between tables, and add,
display, update, search for and list records. Come up with three examples of a web application that
sounds like it would be a complicated problem, but can actually be done as a simple Maypole applica-
tion like the one we've just created, only with (a) changes to the way the data is displayed and (b) some
sort of access control. One free example is a product catalogue for an online business.

Exercise 2. Come up with three examples of a web application which can't be done with these simple ac-

Basic CRUD Sites

4

tions, and analyse what additional functionality would be required to make it work. Remember these, be-
cause we're going to use them later in the tutorial.

Basic CRUD Sites

5

Chapter 2. Maypole basics
Now we've seen what Maypole is capable of, let's now take a bit more detailed look at how it actually
works. Here we're going to discuss the theory of operating a Model-View-Controller process like May-
pole, but we'll also try to tie it into some practical examples as well.

Important concepts
There are at least two really important concepts that are central to Maypole's operation, and, annoyingly,
they're both common words used in a jargony way. So it's important to know what we're talking about
when we refer to a Maypole request and a Maypole action.

The view of Maypole from a thousand miles looks like this:

Figure 2.1. Maypole workflow (from space)

That is, we start with something from the user - a request for a page, typically, with maybe some form
parameters. Basically, nothing much. This hits our Maypole application as a request, and we spend a
little bit of time fleshing it out until it becomes a big fat object which has enough information to respond
to the request, at which point it becomes something small again (a page).

"Fleshing it out" typically involves working out what we need to do to produce that page, pulling the
data out of the database, munging it appropriately, finding the appropriate template to display the data,
collecting together the variables which have to go into that template, and so on. Let's take a closer look
at this workflow.

Maypole request
A Maypole request is analogous to an Apache mod_perl request; it contains all the information that
Maypole gathers from the environment and the user in order to do something and spit out a page. The
funky thing about Maypole requests, unlike mod_perl requests, is that your application is a specialisa-
tion of the Maypole class; the Maypole request will actually be an object in the Supporters class or
whatever your application is called. This seems strange, but it turns out to be really useful later.

We'll see soon what data the request object actually gathers, and what happens when the request is pro-

6

cessed, but for now you need to know that it's essentially an encapsulation of your application and the
user's request for a web page.

Maypole action
Generally when you're requesting a page from a Maypole application, you want something to happen. At
the very least, you're going to want some text to spit back as a web page; (this is the "View" of the MVC
web application paradigm) additionally, you're going to want to do something with your data - either to
load up some data to view it, to edit a record in the database, and to delete one, or some other activity.
(This is the "Model" part. Loosely.)

An example

We access the "supporter/list" page of our supporters application. "supporter" is the data-
base table, and "list" is the action. The job of the model part is to grab a bunch of database
rows from the database. This happens like so: Maypole turns the table name "supporter"
into the class name Supporters::Supporter, since this is the model class which
governs the "supporter" table. (We'll see in the CDBI chapter why this is.) Support-
ers::Supporter inherits from one of the default Maypole model classes, which
provides a "list" method. So Maypole calls Supporters::Supporter->list to
grab the database rows, which are modelled as Supporters::Supporter objects.

These objects are associated with the Maypole request object. The view part then puts the
objects it has gathered into a template variable, and processes that template to produce a
page containing the details of the database rows.

Therefore the response to a Maypole request breaks down as the execution of a method call on a model
class, and the selection and processing of a template in a view class. Together, these two stages are
known as an action. A useful thing to know is that the view part is generally good enough for almost
everything you need to do with Maypole - typically you're just processing templates, and customization
of this part of the action is done by writing better templates. You don't need to write Perl code for this
bit, just templates.

Exception to general rule...

We've just said that the second part of an action requires writing templates. Of course,
there are times when this isn't true, and it doesn't need to be true. So when, for instance,
you're pulling a picture out of the database, you don't want to put the JPEG data through a
template, you want to just spit it out to the browser. Don't worry, you can do that - the tem-
plate step is optional - and we'll see how to do it later.

On the other hand, you will need to write methods, because I can't tell in advance everything that your
Maypole application needs to do! If you want a page which processes a credit card request, you'll need
to write a method which does the credit card processing. That's the bad news. The good news is that
Maypole does everything else for you.

So "writing an action" in Maypole-speak typically means writing a method in a model class, and writing
a template. Since writing a template is to be expected, sometimes an "action" just refers to the method.

Note

Key point: in particular, an action is a method in a model class which is marked by the
:Exported attribute. The purpose of this attribute is to prevent a user in front of a web
browser from being able to call any method at all on your model classes! Actions are there-
fore declared like so:

Maypole basics

7

sub something :Exported {
my ($class, $r) = @_;
$r->objects([$class->get_the_appropriate_objects]);

}

where $r is the Maypole request object.

The scary stuff with the model class
This is probably the messiest and hardest to understand part of Maypole's operation. Once you get it,
everything becomes clear.

The concept of a "model class" in Maypole is a multi-layered one. This is because Maypole wants to
provide you with somewhere you can place your own actions specific to each table, but of course it
wants to do a lot of the work for you. First, it wants to provide default actions for things like listing, edit-
ing and viewing rows; second, it wants a basis for talking to the database table in the first place -
something like Class::DBI. So your model class actually looks something like this:

Figure 2.2. Model class inheritance

Warning

Maypole causes the per-table model classes to inherit from Maypole::Model::CDBI
at runtime; this can occasionally cause a gotcha if you're writing your own actions. For in-
stance:

package Supporters;

Maypole basics

8

use Maypole::Application;
Supporters->setup("...");
...
package Supporters::Supporter;

sub total :Exported {
Calculate the total given by this person,
and display it

}

This won't work. This is because Supporters::Supporter doesn't know anything
about the :Exported attribute until Supporters->setup has run, and so when Perl
tries to compile the attribute, it dies horribly. Putting BEGIN { } around the call to
setup is one way to take care of this.

The Maypole workflow
Now we're in a position to have a closer look at the Maypole workflow. Here's a diagram which adds
more details to the "view from space" we saw at the beginning of the chapter:

Figure 2.3. Maypole workflow

Another view of this process can be found in the Maypole::Workflow manual page which comes
with Maypole.

Maypole basics

9

Note

The first stage, receiving the request and parsing the URL parameters, is actually carried
out by a front-end module. If you're using Maypole::Application (as you probably
should) it will arrange for your application to inherit from either Apache::MVC (for
mod_perl scenarios) or from Maypole::CGI (for CGI use) rather than from Maypole
directly.

The Maypole request object
Once the Maypole process of dealing with a request is kicked off (generally by Apache calling
YourApp->handler, which Maypole provides for you) a request object is instantiated. As mentioned
previously, this is actually an object of YourApp's class, and it is generally referred to, in Apache
mod_perl style, as $r. The object contains the following slots, which get filled in by the handler:

Table 2.1. $r

config The configuration object for this application

view_object An object used to view the data; typically a Template
object

ar The Apache::Request object for this request, if ap-
plicable

path The full path requested, as returned from Apache or from
the CGI environment; let us assume this is /
supporter/view/4. It would then be further split up
into:

table The database table to act on, in this case supporter.

action The requested action: view

args Any further arguments in the path - in this case, 4, which
will later be turned into an object representing the Sup-
porter with ID 4 in the database.

params Any CGI form parameters

model_class The table-specific model class in use; ie, Support-
ers::Supporter

template The name of the template file to be processed. In the ex-
ample above, this would be view unless the view
method decided to change it.

objects Populated with the objects to be acted on; for instance,
the 4 argument would be converted to a Support-
ers::Supporter object here. The list action would
populate this with multiple objects.

template_args Any user-supplied arguments to be handed on to the tem-
plate; this is populated either in the action or in the ad-
ditional_data method. (Or both, of course)

content_type Used to mark the content type to be returned to the
browser.

output Eventually filled in by the view class, unless the action
wants to intervene, this is the data that gets sent back to
the browser.

Maypole basics

10

Template Selection
Maypole searches for templates in three different places: first, it looks for a template specific to a class;
then it looks for a custom template for the whole application; finally, it looks in the factory directory
to use the totally generic, do-the-right-thing template.

The basic application we saw in the first chapter used factory templates to achieve everything; serious
Maypole applications will generally want to use their own templates for everything.

Therefore underneath whatever you specify to be the template root for your Maypole application, we ex-
pect at least three subdirectories; if you're using factory templates, you should copy all the templates
which ship with Maypole into a subdirectory called factory, as we did in the first chapter. Second, if
you're customizing some of those templates, or want a common area to place, for instance, macro files,
there should be a custom subdirectory. Finally, for each table there should be a subdirectory containing
the templates you want to use. For instance, if you want to customize the way supporter/view
looks, you place your own view template in the supporter subdirectory. It's as simple as that.

Here's the code in Maypole which makes it all happen:

sub paths {
my ($self, $r) = @_;
my $root = $r->config->template_root || $r->get_template_root;
return (
$root,
(
$r->model_class
&& File::Spec->catdir($root, $r->model_class->moniker)

),
File::Spec->catdir($root, "custom"),
File::Spec->catdir($root, "factory")

);
}

Configuration
Maypole gives each application a hash in which it can configure itself; in our application, that's accessed
through Supporters->config. Here are the various slots in the configuration hash:

Table 2.2. Maypole configuration hash

dsn The DBI DSN provided to setup.

template_root The path underneath which the template files can be
found.

uri_base The application's root on the web site; that is, the base
URL of this application

model The model class for this application - typically either
Maypole::Model::CDBI or May-
pole::Model::CDBI::Plain.

tables / classes The tables in the database we can play with, and the as-
sociated model classes; these are typically set up by the
call to setup - the tables and classes are determined
automatically in the Maypole::Model::CDBI case,
and manually supplied to setup in the case of

Maypole basics

11

::CDBI::Plain

loader In the case of Maypole::Model::CDBI, the
Class::DBI::Loader (see next chapter) object is
placed here

rows_per_page When Class::DBI::Pager (again, see next chapter)
is used, the number of data rows to be displayed on a
single page

Anything else The config hash is to be used as a generic place for the
application or any plugins it uses to specify their config-
uration details, so all kinds of things may appear in other
slots.

Review of workflow
Let's once again trace the path of a request through Maypole.

Once a request is made for, say, /supporter/edit/20, Maypole's handler first calls out to a front
end class to get the environment and parse the request; it knows that the table should be supporter,
the action and the template edit and the first argument 20.

Next the table is looked up and converted to a class name, Supporters::Supporter. We check to
see if the edit method is available; if not, we just process the template.

If it is, we call the authenticate method to ensure we can do this; if you haven't overriden this
method it lets every request through.

What happens next depends on the Maypole model class. For the default classes, the first argument (20)
is turned into a Supporters::Supporter object representing that row in the table, and placed in
the objects array in the request object.

Then the Supporters::Supporter->edit method is called. This may do anything, including
changing the template, rewriting the template arguments, supplying its own output, but in the general
case, it will just perform some action and prepare the objects in the Maypole request object.

The generic hook additional_data is called to allow the user a final chance to fiddle with each re-
quest. Typically this is where additional template arguments are added.

Finally, the request object is fed to the view class, which handles filling out the template, and the results
are sent back to the front-end for delivery to the user's browser.

This seemingly very specific process is actually the general backbone behind most web applications;
since Maypole does it all for you, it frees you up to only write the code that is specific to your particular
application.

Maypole basics

12

Chapter 3. Class::DBI primer
Now we know the theory, we can start to look at how Maypole application communicate with the data
source. Typical Maypole applications use the Class::DBI library to do this, although theoretically
Maypole is designed to allow other object relational mapping libraries to serve as model classes; in fact,
an Alzabo base class has been written. However, just because Maypole has the flexibility, this doesn't
mean it has to be used, and effectively, Maypole is coupled to Class::DBI and the Template Toolkit.

Basic operation
Class::DBI is an object relational mapping class, and we will assume you understand the basics of
what that means: it means we're going from database rows to Perl objects and vice versa.

To set it up, we subclass Class::DBI to create a "driver" class specific to our database:

package CD::DBI;
use base 'Class::DBI';
__PACKAGE__->connection("dbi:mysql:musicdb");

Next we set up classes for each of the tables we're interested in, subclassing from our driver and setting
up the table name and column list:

package CD::Artist;
use base 'CD::DBI';
__PACKAGE__->table("artist");
__PACKAGE__->columns(All => qw/artistid name popularity/);

CRUD
Class::DBI adds a few more methods to the CD::Artist class to help us search for and retrieve
database rows:

my $waits = CD::Artist->search(name => "Tom Waits")->first;
print $waits->artistid; # 859
print $waits->popularity; # 634

my $previous = CD::Artist->retrieve(858);
print $previous->name; # Tom Petty and the Heartbreakers

So how many Toms are there?
my $toms = CD::Artist->search_like(name => "Tom %")->count;
print $toms; # 6

for my $artist (CD::Artist->retrieve_all) {
print $artist->name, ": ", $artist->popularity, "\n";

}

We can also create a new artist by passing in a hash reference of attributes:

$buff = CD::Artist->create({
name => "Buffalo Springfield",

13

popularity => 10
});

Class::DBI automatically creates data accessors for each of the columns of the table; we can also up-
date columns in the database by passing arguments to the accessors:

print $buff->name;
$buff->popularity(20);

Relationships
Class::DBI supports several types of database relationship. The two most common are has_a and
has_many. It also allows you to use or write plug-in modules to declare other relationship types.

The following diagram illustrates the difference between has_a and has_many:

Figure 3.1. has_a versus has_many

We've already seen the use of a has_a relationship, between CDs and artists - each CD has_a artist.
We've also already written some code to implement a nice Perlish interface to it: when we ask a CD ob-
ject for its artist, it takes the artist primary key, finds the row in the artist table with that ID, and re-
turns the appropriate object. However, in Class::DBI, instead of writing our own accessor, we just
declare the relationship:

CD->has_a(artist => "CD::Artist");
CD::Track->has_a(song => "CD::Song");
...

Class::DBI primer

14

The nice thing about this is that we can also declare relationships to classes which are not
Class::DBI based, but which follow the same general pattern: find the column in the database, do
something to it, and turn it into an object. For instance, the publishdate column needs to be turned
into a Time::Piece object:

CD->has_a(publishdate => 'Time::Piece',
inflate => sub { Time::Piece->strptime(shift, "%Y-%m-%d") },
deflate => 'ymd',

);

As before, we relate a column to a class, but we also specify a subroutine which goes from the data in
the database to an object, and a method to go the other way, to serialize the object back into the data-
base.

has_many relationships are also easy to set up; instead of writing the tracks accessor as we did be-
fore, we ask Class::DBI to do it for us:

CD->has_many(tracks => "CD::Track");

Now, for instance, to dump all the tracks in the database, we can say:

for my $cd (CD->retrieve_all) {
print "CD: ".$cd->title."\n";
print "Artist: ".$cd->artist->name."\n";
for my $track ($cd->tracks) {

print "\t".$track->song->name."\n";
}
print "\n\n";

}

Maypole's default list action uses retrieve_all to stuff the objects slot full of all the records
in a particular table.

Question

Can you see a problem with that? Can you guess how we might fix it?

Plugins
One of the nice things about Class::DBI is that it's flexible and extensible - flexible because it's very
easy to play with its internals (at least once you're comfortable with the tangled web of modules that
makes it all work) and extensible because you can pull in plug-in modules to extend its functionality.
One of those modules is going to solve the problem that we presented at the end of the last section.

CDBI::mysql
Class::DBI often wants me to set up things by hand that the computer should be able to do for me.
For instance, I feel I shouldn't have to specify the columns in the table. Thankfully there are numerous
database specific extensions for Class::DBI on CPAN which know how to interrograte the database
for this information:

Class::DBI primer

15

package CD::DBI;
use base 'Class::DBI::mysql';
__PACKAGE__->connection("dbi:mysql:musicdb");
__PACKAGE__->autoupdate(1);

package CD::Artist;
use base 'CD::DBI';
__PACKAGE__->set_up_table("artist");

This uses the mysql extension to query the database for the columns in the table.

CDBI::Loader
Just as in the same way that Class::DBI::mysql asked the database for its rows, you can set up all
your classes at once by asking the database for its tables as well. The Class::DBI::Loader module
does just this:

my $loader = Class::DBI::Loader->new(
dsn => "dbd:mysql:music",
namespace => "MusicDB"

);

With our database, this will set up classes called MusicDB::CD, MusicDB::Artist, and so on. All
we need to do is set up the relationships between the classes.

CDBI::Loader::Relationship
For very simple relationships, Class::DBI::Loader::Relationship can help set these up as
well:

$loader->relationship("a cd has an artist");
$loader->relationship("a cd has tracks");
...

Since this is exactly the sort of thing that helps setting up quick Maypole applications, Maypole avails it-
self of both Class::DBI::Loader and Class::DBI::Loader::Relationship, putting a
loader slot in the config object:

Supporters->config->{loader}->relationship($_) for (
"a supporter has many gifts", "a supporter has many regulars",
"a regular has a recurrence"

);

CDBI::Pager
Finally, we want to solve the problem of the list method returning everything in our database.
Class::DBI::Pager is another plugin which enables us to restrict the number of items returned on
each retrieval::

use CD;

Class::DBI primer

16

package CD;
use Class::DBI::Pager;
use constant ITEMS_PER_PAGE => 20;
use CGI;
my $page = param("page") || 1;
my $pager = CD->page(ITEMS_PER_PAGE, $page);
my @cds = $pager->retrieve_all;

Class::DBI::Pager is a mix-in for Class::DBI-based classes which allows you to ask for a par-
ticular page of data, given the number of items of data on a page and the page number you want. Calling
page returns a Data::Page object which knows the first page, the last page, which items are on this
page, and so on, and can be used in our template for navigation:

[% IF pager.previous_page %]
 Previous page |
[% END %]
Page [% pager.current_page %]
[% IF pager.next_page %]
| Next page
[% END%]

This is exactly how the default list templates work, and you are encouraged to copy this style for your
own lists. Maypole sets aside the config variable rows_per_page to pass into
Class::DBI::Pager.

Class::DBI primer

17

Chapter 4. Template Toolkit Primer
Once we have the data we want, the next stage is to display it, and this is the job of the view class.
Again, Maypole is not necessarily tied down to one particular view class, and classses have been written
to allow the use of systems like HTML::Mason for templating Maypole applications. You can certainly
go that way if you want to, but as with Class::DBI, Maypole has been most successfully used with
the Template Toolkit. In this section, therefore, we'll present an introduction to how the Template
Toolkit is used in general, and also specifically within Maypole.

Basic templating
The most basic uses of Template Toolkit use it just like other templating systems: to fill scalars into a
form. Variable names are enclosed in [% ... %] pairs, like so:

[% today %]

[% title %] [% forename %] [% surname %]
[% address %]

Dear [% title %] [% surname %],
Thank you for your letter dated [% their_date %]. This is to

confirm that we have received it and will respond with a more
detailed response as soon as possible. In the mean time, we
enclose more details of ...

Notice, however, that our variables inside the Toolkit [% and %] delimiters aren't Perl variables with the
usual type sign in front of them; instead, they're now Template Toolkit variables. Template Toolkit vari-
ables can be more than just simple scalars, though; complex data structures and even Perl objects are
available to Template Toolkit through a simple, consistent syntax. For instance, we could say:

[% today %]

[% name.title %] [% name.forename %] [% name.surname %]

The dot operator is equivalent to Perl's -> - it dereferences array and hash reference elements, and can
also be used to call methods on objects, so here name could be a hash, or it could be an object, but so
long as it has those accessors which give appropriate answers, we don't need to care. If we know they
are objects, then of course we can give parameters to the method calls:

[% name.salutation("Dear %s,") %]

If our variables are arrays underneath, we can use FOREACH to loop over their elements. Here's an ex-
ample from a newsletter I produce with TT:

<h2>In brief</h2>

[% FOREACH point = brief %]
[% point %]
[% END %]

18

As you can see, the syntax is inspired by Perl - we can foreach over a list and use a local variable
point to represent each element of the iterator.

Similarly, there's also the IF/ELSIF/ELSE block:

[% IF delinquent %]
Our records indicate that this is the second issuing of this

invoice. Please pay IMMEDIATELY.
[% ELSE %]

Payment terms: <30 days.
[% END %]

Includes, Macros, Plugins, Filters
If that were all that Template Toolkit would do, it would be on a par with other templating systems. But
there's far more.

Includes
Includes allow us to split out the template into more managable components, placed in individual files;
for instance, Maypole's factory templates use static header and footer files. Here's the header:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<title>[% config.application_name || "A poorly configured
Maypole application" %]</title>

<meta http-equiv="Content-Language" content="en" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"

/>
<link title="Maypole Default" href="/maypole.css" type="text/css"

rel="stylesheet" />
<script type="text/javascript">

</script>
</head>
<body>

<div class="content">

This is placed inside a file called header, and so the factory templates begin with:

[% INCLUDE header %]

So if you want to supply your own look and feel to the default CRUD site, you could do so by creating
custom/header, which will override the default factory header. As you can see, included files re-
ceive the template variables as well, such as config in our example.

Macros
Additionally, you can define macros to simplify repeated pieces of coding. For instance, we've seen that
Maypole URLs are dissected into table, action, and arguments; the factory macros include some code to
construct a link by putting these back together again:

Template Toolkit Primer

19

[%
MACRO link(table, command, additional, label) BLOCK;

'<A HREF="' _ base _ "/" _ table _ "/" _ command _ "/" _
additional _ '">';

label;
"";

END;
%]

Notice here the use of Perl 6 style concatenation operators.

Plugins
Of slightly less common use, but astonishing versatility, is the Template Toolkit plugin system. This
provides the ability for templates to call out to Perl code. For instance, the amazingly helpful (but some-
what dangerous) Template::Plugin::Class allows you to call class methods from within TT:

[% USE tagcloud_c = Class("HTML::TagCloud");
SET tagcloud = tagcloud_c.new;
FOREACH tag = tags;

tagcloud.add(...);
%]

Filters
Template Toolkit filters are a little like Unix filters - they're little routines which take an input, transform
it, and spit it back out again. And just like Unix filters, they're connected to our template output with a
pipe symbol. (|)

For instance, the oddly named format filter performs printf-like formatting on its input:

[% job.description | format("%60s") %] : [% job.cost %]

We can also filter whole blocks of template content. For example, if we wanted to format the output as
HTML, we could apply the html_entity filter to replace entities with their HTML encoding:

[% FILTER html_entity %]
Payment terms: < 30 days.
[% END %]

This turns into:

Payment terms: < 30 days.

Other interesting filters include the upper, lower, ucfirst and lcfirst filters to change the cas-
ing of the text; uri to URI-escape any special characters; eval to treat the text to another level of
Template processing, and perl_eval to treat the output as Perl, eval that, and then add the output to

Template Toolkit Primer

20

the template. For a fuller list of filters with examples, see the Template::Manual::Filters doc-
umentation.

TT within Maypole
As with any view class, TT receives certain template variables from Maypole:

Table 4.1. Template variables

request The Maypole request object

objects The objects to be displayed

base The base URL

config The Maypole::Config object

classmetadata The class metadata as described in Table 1.1, “The
classmetadata hash”

Anything else The contents of $r->template_args is added to the
set of template variables at this point.

Additionally, Maypole makes an alias for the objects it passes in; for instance, in /sup-
porters/list/ the objects can be referred to as supporters as well as objects. If there's only
one item in the objects array, it's given a singular name such as supporter. This makes the tem-
plates much easier to read.

The factory templates are written to use these template variables, and particularly the class-
metadata, to provide a generic CRUD interface. When you are writing your own templates, you can
use as many or as few elements of the factory templates as you like, but you will find that writing your
own templates is actually considerably simpler.

Template Toolkit Primer

21

Chapter 5. Developing web
applications with Maypole

This chapter is designed to draw the main points out of the live coding example that goes on on the
stage. Because it's live coding, I don't know exactly how it's going to go, but I do know some of the
points I want to make to explain what goes through my head when I'm writing a Maypole application.
Therefore this chapter is going to be a mixed bag - both a collection of random notes, hints and tips, and
Maypole programming best practices, and also a printout for your reference of useful code snippets used
in the demonstration application.

Maypole best practices
When I started writing Maypole I had no idea how to write good Maypole applications. When I had
written about ten or fifteen applications, I noticed a series of patterns of development, and wrote them
up in the Maypole manual. Now I've written another load of applications, the patterns have changed
again. Essentially, I'm learning the best practices as I go along. That doesn't mean that Maypole is un-
stable in any way; it just means that the best methodology for creating complex applications in a simple
and maintainable way can only be learnt and developed through experience, and I want to share the cur-
rent state of my experience with you.

Start from scratch
This is the one tip that I wish I'd discovered initially. Failing to understand this has been the cause of big
problems in many people's understanding of how Maypole operates. If you don't get this, you won't un-
derstand how powerful Maypole is, and you'll conclude that it's only for "toy" applications which do
little more than the CRUD example.

The factory templates, the relationship model, even the Class::DBI::Loader, are attractive ways
to start writing an application, because they do most of the work for you. However, as with all these
things, there is a tradeoff between convenience and flexibility, and if you're writing a production applic-
ation, rather than a quick development spike, you want to veer much more toward the flexibility end of
the spectrum. You will be developing your own actions, using custom templates for each action, and do-
ing a lot more than the standard actions do.

So to psychologically cut yourself free from the CRUD application we developed in the first chapter, be
prepared to start writing your application from scratch. Of course it won't be entirely from scratch, be-
cause you'll still be using Maypole and all the tools it gives you to make writing a web application easi-
er, but you will benefit from the following advice:

• Don't use the factory templates. The factory templates are useful if you want to prototype an applica-
tion, and particularly to prototype your schema, and then make minor tweaks to the CRUD design.
However, when you're writing your own full-sized application, you will find it easier to write tem-
plates from scratch.

One reason for this is that, as you are passed in objects by a friendlier name, and you know all the
accessors of a particular object, individualised templates are much simpler than generic ones. For in-
stance, the factory "view" template is 90 lines long; to do the same job for "supporters" would look
like this:

[% PROCESS macros %]
[% INCLUDE header %]
<h2>[% supporter.name %]</h2>

22

<table class="view">
<tr><td class="field">First Name</td><td>[% supporter.first %]</td></tr>
<tr><td class="field">Last Name</td><td>[% supporter.last %]</td></tr>
<tr><td class="field">Title</td><td>[% supporter.title %]</td></tr>
<tr><td class="field">Email</td><td>[% supporter.email %]</td></tr>
<tr><td class="field">Address</td><td>[% supporter.address %]</td></tr>
<tr>

<td class="field">Email newsletter?</td>
<td>[% supporter.email_newletter %]</td>

</tr>
<tr>

<td class="field">Written newsletter?</td>
<td>[% supporter.written_newletter %]</td>

</tr>
</table>

<h2> Gifts </h2>

[% FOR gift = supporters.gift %]

 [% gift.amount %]: [% gift.gifted.ymd %]
[% END %]

Guess which is easier to customize and maintain?

• Use plain Class::DBI. By using ordinary Class::DBI instead of Class::DBI::Loader,
you can put each class, its relationships and its actions into a separate module file; again, it just
makes the code easier to organise.

• Be prepared to override built-in actions. For the same reason as overriding built-in templates, ac-
tions have to be sufficiently generic to do the right thing in all circumstances, but then they can't
really be customized beyond that, and they're generally more complicated than one written from
scratch would be.

Exception to general rule...

Of course, saying that, I've just looked at a recent production application and found it uses
one driver file using Class::DBI::Loader with a bunch of actions in it, and only
overrides one of the built-in actions. In many cases, the default actions are good enough -
that's why they're the default - but on the whole, it's best to override.

Authentication
Most applications need authentication, and the standard answer to the problem in Maypole is May-
pole::Plugin::Authentication::UserSessionCookie. This issues cookies to the user,
and on presentation of a username and password credentials which gets looked up in a particular class, a
user slot is added to the request object. If you have a table called user which has user and pass-
word columns, then the authentication process is simple:

use Maypole::Application qw(Authentication::UserSessionCookie);
use Maypole::Constants;
sub authenticate {

my ($self, $r) = @_;
$r->get_user;
if (!$r->user and $r->action =~ /^(delete|edit|do_edit|....)$/) {

Developing web applications with
Maypole

23

$r->template("login"); # Setting template stops action happening
}
return OK;

}

If you don't have such columns, then it's a bit more complicated, but only a little; see the documentation
to M::P::A::USC.

Other random tips
Here are some other collected best practices which will come out during the demonstration.

Static pages

We don't want static pages, like the CSS, to be processed through the whole Maypole system, so we can
use the authentication process to get rid of them early. Put them all in a directory called static, and
then:

sub authenticate {
my ($r) = @_;
return DECLINED if $self->path =~ /static/;
$r->get_user;
Do authentication stuff here.
return OK;

}

Uploading

Uploading files used to be difficult, but it got easier with the release of May-
pole::Plugin::Upload. This adds the upload method to the Maypole request object, which re-
turns a hash with filename, content, MIME type and so on:

sub do_upload :Export {
my ($self, $r) = @_;
my $photo = $self->create({

uploader => $r->user, # We know who the user is
uploaded => Time::Piece->new(),
title => $r->params->{title}

});

die "Can't write ".$photo->path("file")." because $!"
unless open OUT, ">". $photo->path("file"))

print OUT $upload{content};
close OUT;
...

}

Additional data

We've already mentioned that the additional_data method is a good thing to override to insert ad-
ditional template variables or do any other post-processing:

use Time::HiRes qw(gettimeofday tv_interval);
sub authenticate {

Developing web applications with
Maypole

24

my $r = shift;
$r->{template_args}{started} = [gettimeofday];

}

sub additional_data {
my $r = shift;
$r->{template_args}{time_processing_model} =

tv_interval($r->{template_args}{started}, [gettimeofday];
}

Methods on request object

Sometimes there are things you want to do in your template that require calls out to Perl, and you're not
sure how to do this. For instance, in our application we will build up a couple of lists on the right hand
side - a tag cloud, and a list of recently uploaded photographs. Both are implemented by putting methods
into the Memories class which return the appropriate data:

package Memories;
sub tagcloud {

my $cloud = HTML::TagCloud->new();
fill $cloud
$cloud;

}

Because we pass in the request object $r to the templates as request, this method can be accessed
from the template as [% request.tagcloud %]

Listings
For your reference, here are various code listings which accompany the demonstration application.

SQL Schema
The photo sharing application has the following database schema.

CREATE TABLE photo (
id integer not null auto_increment primary key,
title varchar(255),
uploader integer,
uploaded datetime

);

CREATE TABLE comment (
id integer not null auto_increment primary key,
name varchar(255),
content text,
photo integer

);

CREATE TABLE user (
id integer not null auto_increment primary key,
name varchar(255),
password varchar(255)

);

CREATE TABLE tag (

Developing web applications with
Maypole

25

id integer not null auto_increment primary key,
name varchar(255)

);

CREATE TABLE tagging (
id integer not null auto_increment primary key,
tag integer,
photo integer

);

CSS
And here is the CSS style sheet for the application:

BODY { background: #994; border: 0; margin: 0; padding: 0 }
a { text-decoration: none }
a:hover { text-decoration: underline }
a img { border: 0 }
#nav a { color: #222 }
#nav { background: #fff; padding: 2px; font-weight: bold; font-family:
sans-serif; font-size: 80%; text-align: center}
#rhs { float:right; width: 200px; background: #ddd; height: 100%;
padding: 0 10px 0 10px; border-left: 2px solid black }

#login { margin-top: 10px;
font-weight: bold; font-family: sans-serif; background: #eee}
.loginfield { font-weight: bold; font-size: 80%; }

#main { border: 1px solid black; background: #eee; padding: 5px; margin: 0 0 0 10px; }

h1 { font-family: sans-serif; }
p { font-family: sans-serif; }

#recentuploads { background: #aaa; border: 1px solid black; width: 400px }
.thumb {

width: 100%;
text-align:center; font-size: 80%; font-family:sans-serif;
border-bottom: 1px solid black; }

.photoview {
text-align:center;
}

.userlist {
padding: 5px;
text-align:center; font-weight:bold; font-family:sans-serif;
}

.userlist td { background: #bbb; padding: 10px; }

.comment {
background: #ccc; padding: 10px;
font-family:sans-serif;
margin: 5px 50px 5px 50px

}
.info { font-weight: normal; font-size: 70% }

#tabmenu { border-bottom:2px solid black; margin: 12px 0 0 0;
padding: 0; z-index:1; padding-left:10px;

}

#tabmenu li { display:inline; oveflow:hidden; list-style-type: none; }

#tabmenu a, a.active {

Developing web applications with
Maypole

26

background: #ffa;
color: #000;
font-size: 10pt;
font-weight:bold; font-family:sans-serif;
margin: 0; padding: 2px 5px 0px 5px;
border-right: 1px solid #cc7;
border-top: 1px solid #cc7;
text-decoration:none;

}

#tabmenu a.active {
background: #dd8; border-bottom:3px solid #dd8;
border-left: 1px solid black;

}

#tabmenu a:hover { color: #fff; background: #ac9; text-decoration:none;}
#tabmenu a.active:hover { color: #000; background: #dd8; }

#content { background: #dd8; border:2px solid black; border-top: none;
z-index: 2;margin:0; padding:20px }

.exiftag { font-size: 8pt; background: #ffa; }

.exifvalue { font-size: 9pt; background: #fff }

Developing web applications with
Maypole

27

