Web Applications With Maypole

Simon Cozens

Web Applications With Maypole
by Simon Cozens
Copyright © 2005 Simon Cozens

Table of Contents

L BASIC CRUD SIS ..ttt ettt et e e e e e e e et e et e e e e et e e e et a e aaas 1
LIS = 7= o T PP 1

Y gLl aTe Rt ST e (1)Y= PPN 2
ConfiguIINg APACHIE e e e e e 2

LT AT = R0 T 3
BENINA tNE SCENES ...ttt e et e e et e e et e e et eaeaans 3

T (oS- 4

2. MAYPOIE DBSICSttt 6
[MPOITANT CONCEIILS ... ittt ettt ettt et et et e et et et e e et et et e e et e et e e et e en e e en e et e et eenaenns 6

= Y oo L = [T 6

= Y7 =1 o 7

The scary stuff Withthe MOdEl ClasSviiiiiii e 8

The Maypole WOrKFIOWcooui e 9

The Maypole reqUESE ODJECEcceiee e e 10
TeMPIALE SEIECLION ...t ettt et eas 11
(@001 110U = 1 oo 1 11
REVIAW OF WOTKFIOW ... e et e et eeeaba e eees 12

G @ = 1 I 2 | o 02T 13
BaSIC OPEIEIION ...ttt et e et e e e e e e e e aee 13
L0 L1 | 5 PSP 13

REI AT ONSNIPS ..t et e aas 14

0T N 15
(01T B 1 1) o | 15

(O] 2] B 0 7= L= PRSP 16
CDBI::L0ader::RE@HONSNIP ...cevuiiiiiiie ettt 16

(OB T B =" PP 16

4. Template TOOIKIT PrIMEr ... e ettt e et e et e e ea e aean s 18
BasSiCtEMPIAliNGieeiiii e 18
Includes, Macros, PlUGINS, FIITEISuiii e e e aaas 19

ot 1 L= PRSPPI 19

Y = 0 T PP TPRPRPRN 19

PLUGINS . ettt ettt e et et e e e e e e a e aee 20

T = £ SPPIN 20
TTWIthINMaYPOIE ... e et e e e e e e e e e e aeans 21

5. Developing web applications With Maypolecoivuiiiiiii e e 22
= Y] 00 =Y o= o = 1o =< P 22

S 0] R = (o o 22

W T 110701 1o 1 o PP 23

(0107 gl 7= 1910 (o]0 0 8] 1SRRI 24

IS o S 25

SIS =1 1 25

L T PRSP 26

List of Figures

ST oo o (= (Y0 = = 0= = P 1
2.1. Maypole WOrkflow (FFOM SPACE)uiveeeeii it e e e e e e e e e e e e e aenaees 6
2.2. MOAEl ClasSTNNEITIANCEueiieeeiie e e e e e e et e e et e e et e e e aneeeaneees 8
2.3. MAYPOIEWOIKFIOW ... ettt e e e e et eeeaa s 9
3.1.NAS_ A VEISUSNAS IMBINY ettt ettt e et ettt e e e e e et e e e b e e e e eaaas 14

List of Tables

1.1. Thecl assmet adat @ hashccooviiiiiiii e 4
P22 1 PPN 10
2.2. Maypole configuration Nash ... e 11
A1, TemPlatE VATADIES ... e 21

Vi

Chapter 1. Basic CRUD Sites

The Maypole web application framework can be used on two levels: first, as a simple way to add an in-
terface to a database (and not much else besides), and second, as a toolkit for building more sophistic-
ated web applications. In principle, thereis a continuum of possible usages between these two levels, but
it seems best for the purposes of teaching to entirely separate them.

In the first part of this tutorial, we're going to quickly dispatch the first level of operation, putting a
front-end onto a database. Not only is this useful in its own right in many cases, it both gives a demon-
stration of the power and flexibility of Maypole, and provides a useful basis for showing how Maypole
applications can be expanded.

The Scenario

As many of you know, I'm not really a Perl programmer any more; instead, I'm a missionary. It's a bit of
a strange job, since | don't actually get paid, but | get funded by various supporters. | have a very bad
memory, and need to be reminded who my supporters are, how much they pay me, and how | need to
get in touch with them to let them know what I'm doing and how their money is being used.

This sounds like the ideal job for alittle relational database, and so | drew up the following schema:

Figure 1.1. Supportersdatabase

Ft supporber
¥ regular gift
i — wl - .
id
S pparier lille ————————
sSUppotar
Amnd first
amounl
gifted last |
FRCLIMTa Mg
il —]
slarted
AIrEss | | S
Email i
newslettar? \A == o T
witlen Id
fEvasleller 7 —
Farme
basic matnog
ayEry

CREATE TABLE supporter (

idinteger auto_increnment primary key,
title varchar(5),

first varchar(30),

| ast varchar (50),

Basic CRUD Sites

emai | varchar (255),
address text, emai | _newsl etter integer(1),
witten_newsletter integer(1)

)
CREATE TABLE gift (
idinteger auto_increnent prinary key,
supporter integer,
anount deci mal (6, 2),
gifted date

CREATE TABLE regul ar (
idinteger auto_increnent primary key,
supporter integer,
anmount deci mal (6, 2),
recurrence integer,
started date

)

CREATE t abl e recurrence (
idinteger auto_increnent prinmary key,
name var char (255),
basi c_met hod var char (255),
every integer

Now, to add and update supporters, what do | do? | don't really want to type in SQL all the time, so |
wanted aweb front-end to this database. Thisis where Maypole comesin.

Writing the "driver"

We're going to start with a very, very basic Maypole application, and then build it up to be alittle more
sophisticated. Here's the bare minimum we need:

package Supporters;
use Maypol e:: Applicati on;
Supporters->setup("dbi:msqgl:supporters");
Supporters->config->{uri_base} = "http://local host/supporters/";
Supporters->config->{tenplate root} =

"/ hone/ si non/ maypol e-sites/ supporters/tenplates/"”;

Supporters->config->{l oader}->rel ationship($_) for (
"a supporter has many gifts",
"a supporter has many regul ars”,
"a regul ar has a recurrence”

This should be reasonably self-evident: we say that we're a Maypole application, set up the database
DSN we want to use, tell the application where we're going to live on the web, and where our templates
are going to be, and then define some relationships: a supporter gives one-off gifts and regular gifts, and
aregular gift has arecurrence relation to tell us how regular it is.

The actual version | use has a few more niceties to make it work more smoothly, but we'll come to those
intime.

Configuring Apache

Basic CRUD Sites

Now we have the Perl module which is going to drive our Maypole application, we next need to tell
Apache about it. First if we haven't installed this driver module and it's not sitting in Perl's @ NC, then
we need to tell Perl whereto find it:

<Per| >
use Iib gw

/' hone/ si non/ maypol e-si t es/ supporters/
</ Perl >

And next we have to associate the driver with alocation:

<Location /supporters>
Per | Handl er Supporters
Set Handl er perl-scri pt
</ Locati on>

Almost finally, we need to put Maypole's factory templates where we said we would:
%cp -r ~/maypol e/tenpl ates/factory /hone/ si non/ maypol e-si tes/supporters/tenpl ates

And finaly, we restart Apache. Now on going to the relevant URL, we should have an application up
and running...

What we get

Those few lines of code have actually got us along way. Here we can add and edit rows in the database,
view relationships between various rows, and delete entries. Each table has a set of pages: vi ew, | i st ,
edi t,del et e and soon.

For the supporters database project, | didn't actually need anything else - | just needed the ability to put
rows into the database and see what was already there. For quick applications like this, Maypoleisideal.
But Maypole comes into its own when you start to add "actions' to the application - for instance, if |
wanted to have a page which totalled all donations from different sources, then I'd have to start writing
some code. We'll see how that works in the next few chapters.

Behind the scenes

. Warning

This is an advanced section which we're not going to go into during the tutorial, but which
explains, for your benefit when rereading these notes afterwards, how all of this works.
This should help you to learn about the continuum of Maypole applications, and how to go
from simple application like this to the more complex application we see in the second part
of the tutoria - that means this isn't going mean very much on the first reading. 1'd encour-
age you to read all of the tutorial notes through before coming back to this; it'll make much
more sense that way.

On the other hand, if you feel you understand everything so far and you're bored during the
tutorial and want something to read, feel free to dig into this more challenging material.

Basic CRUD Sites

So far we've just told Maypole about a database and its relationships, and it's come up with a reasonably
useful web application al on its own. How?

There are three factors here: first, database introspection. Maypole's view class provides a lot of

metadata about the selected model class to the templates. The cl assnet adat a template variable isa
hash, which contains the following elements:

Table1l.1. Thecl assnet adat a hash

Name

Description

nane

The Perl class name of the model class

tabl e

The name of the database table

col ums

A list of the columns we're allowed to display on this ta-
ble

col nanes A mapping between the column names and the same

names formatted better for display

rel ated_accessors Method names of the accessors of any has-a relationships

nmoni ker /pl ural _noni ker A "display name" for this model class. (e.g. "supporter"

and "supporters")

cgi

A hash of HTML elements to be used in constructing
formsfor thistable

From this set of metadata, you can construct a set of templates which do the right thing for pretty much
any table. For instance, this template snippet:

[% FOR col = cl assnet adat a. col ums %
<p> [% cl assnet adat a. col nanes. $col 9% : [% object. $col U </ p>
[% END %

will list al the columns of a database row along with the value for this particular object.

This brings us to the second phase in the CRUD strategy: Maypole comes with a sufficiently generic set
of templates (called the "factory templates") for the CRUD operations we've been using so far; it uses
the class metadata to produce pages which look right for whatever shape of database you throw at it.

To finish off the process, there are default actions in each Model base class (for instance, May-
pol e: : Model : : CDBI for the default, Cl ass: : DBI -based applications) which use the CRUD
methods of the underlying data representation to perform the appropriate edit, delete, or whatever ac-
tions. So actually, there are a lot of actions going on - both templates and code - but they're squirreled
away inside the default model class.

Exercises

Exercise 1. So far we've got a web application which can handle relationships between tables, and add,
display, update, search for and list records. Come up with three examples of a web application that
sounds like it would be a complicated problem, but can actually be done as a simple Maypole applica-
tion like the one we've just created, only with (a) changes to the way the data is displayed and (b) some
sort of access control. One free example is a product catalogue for an online business.

Exercise 2. Come up with three examples of aweb application which can't be done with these simple ac-

4

Basic CRUD Sites

tions, and analyse what additional functionality would be required to make it work. Remember these, be-
cause we're going to use them later in the tutorial.

Chapter 2. Maypole basics

Now we've seen what Maypole is capable of, let's now take a bit more detailed look at how it actually
works. Here we're going to discuss the theory of operating a Model-View-Controller process like May-
pole, but well aso try to tie it into some practical examples as well.

Important concepts

There are at least two really important concepts that are central to Maypol€e's operation, and, annoyingly,
they're both common words used in a jargony way. So it's important to know what we're talking about
when we refer to a Maypole request and a Maypole action.

The view of Maypole from athousand miles|ooks like this:

Figure 2.1. Maypole wor kflow (from space)

Request Maypole Response
from user to user

That is, we start with something from the user - a request for a page, typically, with maybe some form
parameters. Basically, nothing much. This hits our Maypole application as a request, and we spend a
little bit of time fleshing it out until it becomes a big fat object which has enough information to respond
to the request, at which point it becomes something small again (a page).

"Fleshing it out" typically involves working out what we need to do to produce that page, pulling the
data out of the database, munging it appropriately, finding the appropriate template to display the data,
collecting together the variables which have to go into that template, and so on. Let's take a closer ook
at this workflow.

Maypole request

A Maypole request is analogous to an Apache mod_perl request; it contains all the information that
Maypole gathers from the environment and the user in order to do something and spit out a page. The
funky thing about Maypole requests, unlike mod_perl requests, is that your application is a specialisa
tion of the Maypol e class; the Maypole request will actually be an object in the Suppor t er s classor
whatever your application is called. This seems strange, but it turns out to be really useful later.

WEe'll see soon what data the request object actually gathers, and what happens when the request is pro-

6

Maypole basics

cessed, but for now you need to know that it's essentially an encapsulation of your application and the
user's request for aweb page.

Maypole action

Generally when you're requesting a page from a Maypol e application, you want something to happen. At
the very least, you're going to want some text to spit back as aweb page; (thisisthe"View" of the MVC
web application paradigm) additionally, you're going to want to do something with your data - either to
load up some datato view it, to edit a record in the database, and to delete one, or some other activity.
(Thisisthe "Model" part. Loosely.)

- An example
We access the "supporter/list” page of our supporters application. "supporter” is the data-
base table, and "list" is the action. The job of the model part is to grab a bunch of database
rows from the database. This happens like so: Maypole turns the table name "supporter"
into the class name Supporters: : Support er, since this is the model class which
governs the "supporter" table. (Well see in the CDBI chapter why this is.) Support -
ers: : Supporter inherits from one of the default Maypole model classes, which
provides a "list" method. So Maypole calls Supporters:: Supporter->list to
grab the database rows, which are modelled as Support er s: : Support er objects.

These objects are associated with the Maypole request object. The view part then puts the
objects it has gathered into a template variable, and processes that template to produce a
page containing the details of the database rows.

Therefore the response to a Maypole request breaks down as the execution of a method call on a model
class, and the selection and processing of a template in a view class. Together, these two stages are
known as an action. A useful thing to know is that the view part is generally good enough for almost
everything you need to do with Maypole - typically you're just processing templates, and customization
of this part of the action is done by writing better templates. Y ou don't need to write Perl code for this
bit, just templates.

- Exception to general rule...
WEe've just said that the second part of an action requires writing templates. Of course,
there are times when this isn't true, and it doesn't need to be true. So when, for instance,
you're pulling a picture out of the database, you don't want to put the JPEG data through a
template, you want to just spit it out to the browser. Don't worry, you can do that - the tem-
plate step is optional - and we'll see how to do it later.

On the other hand, you will need to write methods, because | can't tell in advance everything that your
Maypole application needs to do! If you want a page which processes a credit card request, you'll need
to write a method which does the credit card processing. That's the bad news. The good news is that
Maypole does everything else for you.

So "writing an action" in Maypole-speak typically means writing a method in a model class, and writing
atemplate. Since writing atemplate is to be expected, sometimes an "action” just refers to the method.

Note

¥
Key point: in particular, an action is a method in a model class which is marked by the
: Export ed attribute. The purpose of this attribute is to prevent a user in front of a web
browser from being able to call any method at all on your model classes! Actions are there-
fore declared like so:

Maypole basics

sub sonething : Exported {
ny ($class, $r) = @;
$r->obj ects([$cl ass->get _the _appropriate_objects]);

where $r isthe Maypole regquest object.

The scary stuff with the model class

This is probably the messiest and hardest to understand part of Maypole's operation. Once you get it,
everything becomes clear.

The concept of a "model class' in Maypole is a multi-layered one. This is because Maypole wants to
provide you with somewhere you can place your own actions specific to each table, but of course it
wants to do alot of the work for you. First, it wants to provide default actions for things like listing, edit-
ing and viewing rows; second, it wants a basis for talking to the database table in the first place -
something like Cl ass: : DBI . So your model class actually looks something like this:

Figure 2.2. Modd classinheritance

Your own actions,
specific to the table,
go in this one

Maypole's default \
actions, i
specific to Class:DBI, Supporters::Gift
go here

L‘ Maypole::Model::CDBI Class::DBI 4—’—\

Maypole::Model:: -) This is how it
Base actually

] talks to your
m data source

Non-specific default actions,
plus how to be a Model class, go here

. Warning

Maypole causes the per-table model classes to inherit from Maypol e: : Model : : CDBI
at runtime; this can occasionally cause a gotcha if you're writing your own actions. For in-
stance:

package Supporters;

Maypole basics

use Maypol e:: Applicati on;
Supporters->setup("...");
#

paéi(élge Supporters:: Supporter;
sub total :Exported {

Calculate the total given by this person,
and display it

This won't work. This is because Supporters: : Supporter doesn't know anything
about the : Expor t ed attribute until Support er s- >set up has run, and so when Perl
tries to compile the attribute, it dies horribly. Putting BEG N { } around the call to
set up isone way to take care of this.

The Maypole workflow

Now we're in a position to have a closer look at the Maypole workflow. Here's a diagram which adds
more detailsto the "view from space” we saw at the beginning of the chapter:

Figure 2.3. Maypole wor kflow

Lol Ligh i 1"

B[Bupi -3l

Another view of this process can be found in the Maypol e: : Wor kf | ow manual page which comes
with Maypole.

Maypole basics

Note

The first stage, receiving the request and parsing the URL parameters, is actualy carried
out by a front-end module. If you're using Maypol e: : Appl i cati on (as you probably
should) it will arrange for your application to inherit from either Apache: : MVC (for
mod_perl scenarios) or from Maypol e: : CA (for CGI use) rather than from Maypol e
directly.

The Maypole request object

Once the Maypole process of dealing with a request is kicked off (generally by Apache caling
Your App- >handl er, which Maypole provides for you) arequest object is instantiated. As mentioned
previously, this is actually an object of Your App's class, and it is generaly referred to, in Apache
mod_perl style, as $r . The abject contains the following slots, which get filled in by the handler:

Table2.1. $r

config

The configuration object for this application

vi ew_obj ect

An object used to view the data; typicaly a Tenpl at e
object

ar The Apache: : Request abject for this request, if ap-
plicable

pat h The full path requested, as returned from Apache or from
the CGI environment; let us assume this is /
supporter/vi ew 4. It would then be further split up
into:

tabl e The database table to act on, in thiscase supporter.

action The requested action: vi ew

args Any further arguments in the path - in this case, 4, which
will later be turned into an object representing the Sup-
porter with ID 4 in the database.

par anms Any CGI form parameters

nodel _cl ass

The table-specific model class in use; ie, Support -
ers:: Supporter

tenpl ate The name of the template file to be processed. In the ex-
ample above, this would be vi ew unless the vi ew
method decided to changeit.

obj ects Populated with the objects to be acted on; for instance,

the 4 argument would be converted to a Support -
ers: : Supporter object here. The list action would
populate this with multiple objects.

tenpl ate_args

Any user-supplied arguments to be handed on to the tem-
plate; thisis populated either in the action or in the ad-
di tional _dat a method. (Or both, of course)

content _type

Used to mark the content type to be returned to the
browser.

out put

Eventualy filled in by the view class, unless the action
wants to intervene, this is the data that gets sent back to
the browser.

10

Maypole basics

Template Selection

Maypole searches for templates in three different places: first, it looks for a template specific to a class;
then it looks for a custom template for the whole application; finaly, it looksin thef act ory directory
to use the totally generic, do-the-right-thing template.

The basic application we saw in the first chapter used factory templates to achieve everything; serious
Maypole applications will generally want to use their own templates for everything.

Therefore underneath whatever you specify to be the template root for your Maypole application, we ex-
pect at least three subdirectories; if you're using factory templates, you should copy all the templates
which ship with Maypole into a subdirectory called f act or y, aswe did in the first chapter. Second, if
you're customizing some of those templates, or want a common area to place, for instance, macro files,
there should be acust omsubdirectory. Finally, for each table there should be a subdirectory containing
the templates you want to use. For instance, if you want to customize the way supporter/vi ew
looks, you place your own vi ewtemplateinthe suppor t er subdirectory. It's as simple as that.

Here's the code in Maypole which makesiit all happen:

sub paths {
ny ($self, $r) = @;
ny $root = $r->config->tenplate_root || $r->get_tenplate_root;
return (
$root,

$r- >nodel _cl ass
&& File:: Spec->catdir($root, $r->npdel _class->noni ker)

)1
Fi |l e:: Spec->catdir($root, "custont),
File::Spec->catdir($root, "factory")

Configuration

Maypole gives each application a hash in which it can configure itself; in our application, that's accessed
through Support er s- >conf i g. Here are the various slots in the configuration hash:

Table 2.2. Maypole configuration hash

dsn The DBI DSN provided to set up.

template _root The path underneath which the template files can be
found.

uri_base The application's root on the web site; that is, the base
URL of this application

model The model class for this application - typicaly either

Maypol e: : Model : : CDBI or May -
pol e: : Model : : CDBI : : Pl ai n.

tables/ classes

The tables in the database we can play with, and the as-
sociated model classes; these are typically set up by the
call to set up - the tables and classes are determined
automatically in the Maypol e: : Mbdel : : CDBI case,
and manually supplied to setup in the case of

11

Maypole basics

::CDBl::Plain

|oader

In the case of Maypol e:: Model :: CDBI, the
Cl ass:: DBl :: Loader (see next chapter) object is
placed here

rows_per_page When Cl ass: : DBl : : Pager (again, see next chapter)

is used, the number of data rows to be displayed on a
single page

Anything else The config hash is to be used as a generic place for the

application or any plugins it uses to specify their config-
uration details, so all kinds of things may appear in other
slots.

Review of workflow

Let's once again trace the path of areguest through Maypole.

Once arequest is made for, say, / support er/ edi t/ 20, Maypole's handler first calls out to a front
end class to get the environment and parse the request; it knows that the table should be support er,
the action and the template edi t and the first argument 20.

Next the table is looked up and converted to a class name, Support ers: : Support er . We check to
seeif theedi t method isavailable; if not, we just process the template.

If it is, we call the aut hent i cat e method to ensure we can do this; if you haven't overriden this
method it lets every request through.

What happens next depends on the Maypole model class. For the default classes, the first argument (20)
isturned into a Support ers: : Support er object representing that row in the table, and placed in
theobj ect s array in the request object.

Then the Supporters:: Supporter->edit method is caled. This may do anything, including
changing the template, rewriting the template arguments, supplying its own output, but in the general
case, it will just perform some action and prepare the objects in the Maypole request object.

The generic hook addi t i onal _dat a iscaled to alow the user afinal chance to fiddle with each re-
quest. Typicaly thisis where additional template arguments are added.

Finally, the request object is fed to the view class, which handles filling out the template, and the results
are sent back to the front-end for delivery to the user's browser.

This seemingly very specific process is actually the general backbone behind most web applications;
since Maypole doesiit al for you, it frees you up to only write the code that is specific to your particular
application.

12

Chapter 3. G ass: : DBl primer

Now we know the theory, we can start to look at how Maypole application communicate with the data
source. Typica Maypole applications use the Cl ass: : DBl library to do this, athough theoretically
Maypoleis designed to allow other object relational mapping libraries to serve as model classes; in fact,
an Alzabo base class has been written. However, just because Maypole has the flexibility, this doesn't
mean it has to be used, and effectively, Maypoleis coupled to Cl ass: : DBl and the Template Toolkit.

Basic operation

Cl ass: : DBI isan object relational mapping class, and we will assume you understand the basics of
what that means: it means we're going from database rows to Perl objects and vice versa.

To set it up, wesubclassCl ass: : DBI to create a"driver" class specific to our database:

package CD:: DBl ;
use base 'C ass:: DBl ;
___PACKAGE __->connection("dbi: mysql : musi cdb");

Next we set up classes for each of the tables we're interested in, subclassing from our driver and setting
up the table name and column list:

package CD:: Arti st;

use base 'CD::DBI"';

_ PACKAGE__->table("artist");

_ PACKAGE ->colums(All => gw artistid name popularity/);

CRUD

Cl ass: : DBl adds a few more methods to the CD: : Arti st classto help us search for and retrieve
database rows:

ny $waits = CD:: Arti st->search(name => "Tom Waits")->first;
print $waits->artistid; # 859
print $waits->popularity; # 634

ny $previous = CD:: Artist->retrieve(858);
print $previous->nanme; # Tom Petty and the Heartbreakers

So how many Tons are there?
ny $toms = CD:: Artist->search_like(name => "Tom %) - >count;
print $toms; # 6

for my $artist (CD.:Artist->retrieve_all) {
print $artist->name, ": ", $artist->popularity, "\n";
}

We can also create a new artist by passing in a hash reference of attributes:

$buff = CD:: Artist->create({
nane => "Buffalo Springfield",

13

O ass: : DBl primer

Cl ass: : DBl automatically creates data accessors for each of the columns of the table; we can aso up-

popul arity => 10
).

date columns in the database by passing arguments to the accessors:

print $buff->nane;

$buf f - >popul arity(20);

Relationships

Cl ass: : DBl supports severa types of database relationship. The two most common are has_a and

has_many. It also allows you to use or write plug-in modules to declare other relationship types.

The following diagram illustrates the difference between has _a and has_nany:

Figure3.1. has_a versushas_nmany

We've dready seen the use of a has_a relationship, between CDs and artists - each CD has_a artist.
We've aso aready written some code to implement a nice Perlish interface to it; when we ask a CD ob-
ject for its artist, it takes the artist primary key, findstherow inthearti st table with that ID, and re-
turns the appropriate object. However, in G ass: : DBI , instead of writing our own accessor, we just

declare the relationship:

CD->has_a(arti st

=> "CD::Artist");

CD: : Track->has_a(song => "CD:: Song");

...

CD A CD has_a artist - artist
id name l id name
1 Blood Money 1 1 Tom Waits
2 Alice 1 2 Elvis Costello
3| Get Happy! O Toore trgers |2 Ellotsmith
4 Rain Dogs 1 primary key 4 John Mariyn
5 Edge of A Dream 5] Bert Jansch
@"F A €D has_many track
fracks
id name artist id name cd
1 Blood Money 1 Singapore
2 Alice 1 2 iot Act 3
3 Get Happy! e 0 of A Dream | 5
Target stores
5 Edge of A Dream 5 5 Clap Hands 4

14

O ass: : DBl primer

The nice thing about this is that we can also declare relationships to classes which are not
Cl ass: : DBl based, but which follow the same general pattern: find the column in the database, do
something to it, and turn it into an object. For instance, the publ i shdat e column needs to be turned
intoaTi me: : Pi ece object:

CD- >has_a(publishdate => 'Tine:: Piece',
inflate => sub { Tine::Piece->strptine(shift, "%-%n%") },
deflate => 'ymd',
)

As before, we relate a column to a class, but we also specify a subroutine which goes from the data in
the database to an object, and a method to go the other way, to serialize the object back into the data
base.

has_many relationships are also easy to set up; instead of writing thet r acks accessor as we did be-
fore, weask Cl ass: : DBl todoitfor us:
CD- >has_many(tracks => "CD:: Track");

Now, for instance, to dump all the tracks in the database, we can say:

for ny $cd (CD->retrieve_all) {
print "CD: ".$cd->title."\n";
print "Artist: ".$cd->artist->nane."\n";
for my $track ($cd->tracks) {
print "\t".$track->song->nane. "\ n";

print "\n\n";

Maypole's default | i st actionusesretri eve_al | to stuff the obj ect s slot full of all the records
in aparticular table.

Question

Can you see a problem with that? Can you guess how we might fix it?

L&

Plugins

One of the nice things about Cl ass: : DBI isthat it's flexible and extensible - flexible because it's very
easy to play with its internals (at least once you're comfortable with the tangled web of modules that
makes it all work) and extensible because you can pull in plug-in modules to extend its functionality.
One of those modulesis going to solve the problem that we presented at the end of the last section.

CDBI::mysql

Cl ass: : DBl often wants me to set up things by hand that the computer should be able to do for me.
For instance, | feel | shouldn't have to specify the columns in the table. Thankfully there are numerous
database specific extensions for Cl ass: : DBl on CPAN which know how to interrograte the database
for thisinformation:

15

O ass: : DBl primer

CDBI:

CDBI:

CDBI:

package CD:: DBl ;

use base 'd ass::DBl::nysqgl';
__PACKAGE__->connection("dbi: mysql: nusi cdb");
__ PACKAGE - >autoupdate(l);

package CD:: Arti st;
use base 'CD::DBI';
_ PACKAGE ->set _up_table("artist");

Thisusesthemysql extension to query the database for the columnsin the table.

‘Loader

Just asin the same way that Cl ass: : DBl : : nysql asked the database for its rows, you can set up all
your classes at once by asking the database for itstablesaswell. The Cl ass: : DBl : : Loader module
doesjust this:

ny $l oader = Cl ass::DBl:: Loader->new(
dsn => "dbd: nysql : nusi c",
nanespace => "Misi cDB"

With our database, this will set up classes called Musi ¢DB: : CD, Musi ¢DB: : Arti st, and soon. All
we need to do is set up the rel ationships between the classes.

:Loader::Relationship

For very simple relationships, Cl ass: : DBl : : Loader: : Rel ati onshi p can help set these up as
well:

$l oader->rel ati onship("a cd has an artist");
$l oader - >rel ationshi p("a cd has tracks");
...

Since thisis exactly the sort of thing that helps setting up quick Maypole applications, Maypole avails it-
self of both Cl ass: : DBl :: Loader and Cl ass: : DBl :: Loader: : Rel ati onshi p, putting a
| oader dotinthe config object:

Supporters->config->{l oader}->relationship($_) for (
"a supporter has nmany gifts", "a supporter has many regul ars",
"a regul ar has a recurrence"

:Pager

Finally, we want to solve the problem of the | i st method returning everything in our database.
Cl ass: : DBI : : Pager isanother plugin which enables us to restrict the number of items returned on
each retrieval::

use CD;

16

O ass: : DBl primer

package CD;

use C ass::DBIl:: Pager;

use constant | TEMS_PER PACGE => 20;

use C43;

ny $page = paran("page") || 1,

ny $pager = CD >page(l TEMS_PER PAGE, $page);
ny @ds = $pager->retrieve_all;

Cl ass: : DBI:: Pager isamix-infor Cl ass: : DBI -based classes which allows you to ask for a par-
ticular page of data, given the number of items of data on a page and the page number you want. Calling
page returns aDat a: : Page object which knows the first page, the last page, which items are on this
page, and so on, and can be used in our template for navigation:

[% | F pager. previous_page %

 Previ ous page </ A> |
[% END %

Page [% pager.current _page %

[% | F pager. next page %

| Next page </ A>

[% END%

Thisis exactly how thedefault | i st templates work, and you are encouraged to copy this style for your
own listss Maypole sets aside the config variable rows_per_page to pass into
Cl ass:: DBl :: Pager.

17

Chapter 4. Template Toolkit Primer

Once we have the data we want, the next stage is to display it, and this is the job of the view class.
Again, Maypole is not necessarily tied down to one particular view class, and classses have been written
to allow the use of systemslike HTML: : Mason for templating Maypole applications. Y ou can certainly
go that way if you want to, but as with Cl ass: : DBl , Maypole has been most successfully used with
the Template Toolkit. In this section, therefore, we'll present an introduction to how the Template
Toolkit is used in general, and also specifically within Maypole.

Basic templating

The most basic uses of Template Toolkit use it just like other templating systems: to fill scalars into a
form. Variable namesareenclosed in[% . . . 9% pairs, like so:

[%today %

[%title Y [%forenane % [% surnanme %
[% address %

Dear [%title %9 [% surname %,

Thank you for your letter dated [%t hei
confirmthat we have received it and wll
detail ed response as soon as possible. In
encl ose nore details of

r date %4. This is to
respond with a nore
the nean tine, we

Notice, however, that our variablesinside the Toolkit [%and %4 delimiters aren't Perl variables with the
usual type sign in front of them; instead, they're now Template Toolkit variables. Template Toolkit vari-
ables can be more than just simple scalars, though; complex data structures and even Perl objects are
available to Template Toolkit through a simple, consistent syntax. For instance, we could say:

[% today %

[Ynane.title %4 [% nane.forenane % [% nane. surnane %

The dot operator is equivaent to Perl's - > - it dereferences array and hash reference elements, and can
also be used to call methods on objects, so here nane could be a hash, or it could be an object, but so
long as it has those accessors which give appropriate answers, we don't need to care. If we know they
are objects, then of course we can give parameters to the method calls:

[% nanme. sal utation("Dear %,") %

If our variables are arrays underneath, we can use FOREACH to loop over their elements. Here's an ex-
ample from a newsletter | produce with TT:

<h2>In brief </ h2>

[% FOREACH point = brief %
[%point AB</Ii>

[% END %

</ ul >

18

Template Toolkit Primer

As you can see, the syntax is inspired by Perl - we can f or each over alist and use alocal variable
poi nt to represent each element of the iterator.

Similarly, there's also the | F/ELSI F/ELSE block:

[%1F delinquent %
Qur records indicate that this is the second issuing of this
i nvoi ce. Pl ease pay | MVEDI ATELY.
[% ELSE %
Paynment terns: <30 days.
[% END %

Includes, Macros, Plugins, Filters

If that were all that Template Toolkit would do, it would be on a par with other templating systems. But
there's far more.

Includes

Includes alow us to split out the template into more managable components, placed in individual files;
for instance, Maypol€e's factory templates use static header and footer files. Here's the header:

<I DOCCTYPE htm PUBLIC "-//WBC//DID XHTM. 1.0 Strict//EN'
"http://ww. w3. org/ TR xhtm 1/ DTD/ xht m 1-strict.dtd">
<htm xm ns="http://ww. w3. org/ 1999/ xhtm " xm : 1 ang="en" | ang="en">
<head>
<title>[%config.application_nane || "A poorly configured

Maypol e application" Y</title>

<neta http-equi v="Cont ent - Language" content="en" />
) <nmeta http-equi v="Content-Type" content="text/htm ; charset=utf-8"

>

<link title="Maypol e Default" href="/maypol e.css" type="text/css"
rel ="styl esheet” />

<script type="text/javascript">
</script>
</ head>
<body>

<di v class="content">

Thisisplaced inside afile called header , and so the factory templates begin with:
[% | NCLUDE header %

So if you want to supply your own look and feel to the default CRUD site, you could do so by creating
cust onf header , which will override the default factory header. As you can see, included files re-
ceive thetemplate variables aswell, such asconf i g in our example.

Macros

Additionally, you can define macros to simplify repeated pieces of coding. For instance, we've seen that
Maypole URLs are dissected into table, action, and arguments; the factory macros include some code to
construct alink by putting these back together again:

19

Template Toolkit Primer

[%
MACRO | i nk(tabl e, conmand, additional, |abel) BLOCK;
'<A HREF="' _ base _ "/" _ table _ "/" _ command _ "/" _
additional _ "">';
| abel ;
"< AT
END;
4

Notice here the use of Perl 6 style concatenation operators.
Plugins

Of dlightly less common use, but astonishing versatility, is the Template Toolkit plugin system. This
provides the ability for templates to call out to Perl code. For instance, the amazingly helpful (but some-
what dangerous) Tenpl at e: : Pl ugi n: : Cl ass alowsyou to call class methods from within TT:

[% USE tagcl oud_c = O ass("HTM.: : Tagd oud") ;
SET tagcl oud = tagcl oud_c. new,
FOREACH tag = tags;
tagcl oud. add(...);
%

Filters

Template Toolkit filters are alittle like Unix filters - they're little routines which take an input, transform
it, and spit it back out again. And just like Unix filters, they're connected to our template output with a

pipe symbol. (])
For instance, the oddly named f or mat filter performspr i nt f -like formatting on its input:

[%]ob.description | format("9%60s") 9% : [%job.cost %

We can also filter whole blocks of template content. For example, if we wanted to format the output as
HTML, we could apply theht ml _ent i t y filter to replace entities with their HTML encoding:

[% FILTER htm _entity %
Paynment terns: < 30 days.
[% END %

Thisturnsinto:

Paynment terns: & t; 30 days.

Other interesting filters include the upper , | ower , ucfirst andl cfirst filtersto change the cas-
ing of the text; uri to URI-escape any specia characters; eval to treat the text to another level of
Template processing, and per | _eval to treat the output as Perl, eval that, and then add the output to

20

Template Toolkit Primer

the template. For afuller list of filters with examples, seethe Tenpl at e: : Manual : : Fi |l t er s doc-
umentation.

TT within Maypole

Aswith any view class, TT receives certain template variables from Maypole:

Table4.1. Template variables

request The Maypole request object

objects The objects to be displayed

base The base URL

config The Maypol e: : Confi g object

classmetadata The class metadata as described in Table 1.1, “The
cl assmet adat a hash”

Anything else The contents of $r - >t enpl at e_ar gs is added to the
set of template variables at this point.

Additionally, Maypole makes an dlias for the objects it passes in; for instance, in /sup-
porters/list/ theobjectscan bereferred to assupport ers aswell asobj ect s. If there'sonly
one item in the obj ect s array, it's given a singular name such as suppor t er . This makes the tem-
plates much easier to read.

The factory templates are written to use these template variables, and particularly the cl ass-
net adat a, to provide a generic CRUD interface. When you are writing your own templates, you can
use as many or as few elements of the factory templates as you like, but you will find that writing your
own templates is actually considerably simpler.

21

Chapter 5. Developing web
applications with Maypole

This chapter is designed to draw the main points out of the live coding example that goes on on the
stage. Because it's live coding, | don't know exactly how it's going to go, but | do know some of the
points | want to make to explain what goes through my head when I'm writing a Maypole application.
Therefore this chapter is going to be a mixed bag - both a collection of random notes, hints and tips, and
Maypole programming best practices, and also a printout for your reference of useful code snippets used
in the demonstration application.

Maypole best practices

When | started writing Maypole | had no idea how to write good Maypole applications. When | had
written about ten or fifteen applications, | noticed a series of patterns of development, and wrote them
up in the Maypole manual. Now I've written another load of applications, the patterns have changed
again. Essentially, I'm learning the best practices as | go along. That doesn't mean that Maypole is un-
stable in any way; it just means that the best methodology for creating complex applicationsin a simple
and maintainable way can only be learnt and developed through experience, and | want to share the cur-
rent state of my experience with you.

Start from scratch

Thisisthe onetip that | wish I'd discovered initially. Failing to understand this has been the cause of big
problems in many peopl€'s understanding of how Maypole operates. If you don't get this, you won't un-
derstand how powerful Maypole is, and you'll conclude that it's only for "toy" applications which do
little more than the CRUD example.

The factory templates, the relationship model, even the Cl ass: : DBI : : Loader , are attractive ways
to start writing an application, because they do most of the work for you. However, as with al these
things, there is a tradeoff between convenience and flexibility, and if you're writing a production applic-
ation, rather than a quick development spike, you want to veer much more toward the flexibility end of
the spectrum. Y ou will be developing your own actions, using custom templates for each action, and do-
ing alot more than the standard actions do.

So to psychologically cut yourself free from the CRUD application we developed in the first chapter, be
prepared to start writing your application from scratch. Of course it won't be entirely from scratch, be-
cause you'll till be using Maypole and al the tools it gives you to make writing a web application easi-
er, but you will benefit from the following advice:

» Don't use the factory templates. The factory templates are useful if you want to prototype an applica-
tion, and particularly to prototype your schema, and then make minor tweaks to the CRUD design.
However, when you're writing your own full-sized application, you will find it easier to write tem-
plates from scratch.

One reason for this is that, as you are passed in objects by a friendlier name, and you know all the
accessors of a particular object, individualised templates are much simpler than generic ones. For in-
stance, the factory "view" template is 90 lines long; to do the same job for "supporters® would look
likethis:

[% PROCESS macros %
[% | NCLUDE header %
<h2>[% supporter. nane % </ h2>

22

Developing web applications with
Maypole

<tabl e cl ass="view'>
<tr><td class="field">First Nanme</td><td>[% supporter.first G </td></tr>
<tr><td class="field">Last Name</td><td>[% supporter.last AY</td></tr>
<tr><td class="field">Title</td><td>] % supporter.title AY</td></tr>
<tr><td class="field">Email </td><td>] % supporter.email 9% </td></tr>
<tr><td class="fiel d">Address</td><td>[% supporter.address Y </td></tr>
<tr>
<td class="field">Email newsletter?</td>
<td>[% supporter.enmail _newletter %Y </td>
</tr>
<tr>
<td class="field">Witten newsletter?</td>
<td>[% supporter.witten newetter %Y </td>
</tr>
</ tabl e>

<h2> Gfts </ h2>

[%FOR gift = supporters.gift %
[%gift.amount %4: [%qgift.gifted.ymd 94 </1i>
[% END %
</ ul >

Guess which is easier to customize and maintain?

e« Useplain C ass: : DBl . By using ordinary C ass: : DBl instead of Cl ass: : DBl : : Loader,
you can put each class, its relationships and its actions into a separate module file; again, it just
makes the code easier to organise.

* Be prepared to override built-in actions. For the same reason as overriding built-in templates, ac-
tions have to be sufficiently generic to do the right thing in al circumstances, but then they can't
really be customized beyond that, and they're generally more complicated than one written from
scratch would be.

Exception to general rule...

Of course, saying that, I've just looked at a recent production application and found it uses
one driver file using Cl ass: : DBl : : Loader with a bunch of actions in it, and only
overrides one of the built-in actions. In many cases, the default actions are good enough -
that's why they're the default - but on the whole, it's best to override.

Authentication

Most applications need authentication, and the standard answer to the problem in Maypole is May-

pol e:: Pl ugi n: : Aut henti cati on: : User Sessi onCooki e. This issues cookies to the user,
and on presentation of a username and password credentials which gets looked up in a particular class, a
user dot is added to the request object. If you have atable called user which hasuser and pass-

wor d columns, then the authentication processis simple:

use Maypol e:: Application gw Aut henti cation:: User Sessi onCooki e) ;
use Maypol e:: Const ants;
sub aut henticate {
ny ($self, $r) = @;
$r- >get _user;
if (!'$r->user and $r->action =~ /~(delete|edit|do_edit|....)$/) {

23

Developing web applications with
Maypole

$r->tenplate("login"); # Setting tenplate stops acti on happeni ng
return oK

If you don't have such columns, then it's a bit more complicated, but only a little; see the documentation
toM: P:: A USC.

Other random tips

Here are some other collected best practices which will come out during the demonstration.
Static pages

We don't want static pages, like the CSS, to be processed through the whole Maypole system, so we can
use the authentication process to get rid of them early. Put them all in a directory called st ati c, and
then:

sub aut henticate
ny ($r) = @; _ _
return DECLINED i f $self->path =~ /static/;
$r- >get _user;
Do authentication stuff here.
return CK;

Uploading

Uploading files used to be difficult, but it got easier with the release of May-
pol e: : Pl ugi n: : Upl oad. This adds the upl oad method to the Maypole request object, which re-
turns a hash with filename, content, MIME type and so on:

sub do_upl oad : Export {
ny ($self, $r) = @;
ny $photo = $sel f->create({
upl oader => $r->user, # W know who the user is
upl oaded => Ti ne: : Pi ece- >new),
title => $r->paranms->{title}

1),

die "Can't wite ".$photo->path("file")." because $!"
unl ess open QUT, ">". $photo->path("file"))

print OUT $upl oad{content};

cl ose QUT;

...

Additional data

We've already mentioned that the addi t i onal _dat a method is a good thing to override to insert ad-
ditional template variables or do any other post-processing:

use Time::H Res gw(gettinmeofday tv_interval);
sub aut henticate {

24

Developing web applications with

Maypole

ny $r = shift;

$r->{tenpl ate_args}{started} = [gettineofday];
}
sub additional data {

ny $r = shift;

$r->{tenmpl ate_args}{ti ne_processi ng_nodel } =

tv_interval ($r->{tenplate_args}{started}, [gettineofday];

}

Methods on request object

Sometimes there are things you want to do in your template that require calls out to Perl, and you're not
sure how to do this. For instance, in our application we will build up a couple of lists on the right hand
side - atag cloud, and alist of recently uploaded photographs. Both are implemented by putting methods
into the Menor i es class which return the appropriate data:

package Menori es;

sub tagcl oud {
ny $cl oud = HTM.:: Tagd oud- >new() ;
fill $cloud
$cl oud;

Because we pass in the request object $r to the templates as r equest , this method can be accessed
fromthetemplateas[% r equest . t agcl oud %4

Listings
For your reference, here are various code listings which accompany the demonstration application.

SQL Schema

The photo sharing application has the following database schema.

CREATE TABLE photo (
idinteger not null auto_increment primry key,
title varchar(255),
upl oader i nteger,
upl oaded datetine

)

CREATE TABLE conmment (
idinteger not null auto_increment primry key,
nane var char (255),
content text,
photo i nteger

CREATE TABLE user (
idinteger not null auto_increment primry key,
nane var char (255),
passwor d var char (255)

CREATE TABLE tag (

25

Developing web applications with
Maypole

idinteger not null auto_increment primry key,
nane var char (255)

)

CREATE TABLE taggi ng (
idinteger not null auto_increment primry key,
tag integer,
phot o i nteger

CSS

And hereisthe CSS style sheet for the application:

BODY { background: #994; border: 0; nmargin: 0; padding: O }

a { text-decoration: none }

a: hover { text-decoration: underline }

ainmg { border: 0}

#nav a { color: #222 }

#nav { background: #fff; padding: 2px; font-weight: bold; font-famly
sans-serif; font-size: 80% text-align: center}

#rhs { float:right; w dth: 200px; background: #ddd; height: 100%
paddi ng: 0 10px 0 10px; border-left: 2px solid black }

#login { margin-top: 10px;
font-weight: bold; font-famly: sans-serif; background: #eee}
.loginfield { font-weight: bold; font-size: 80% }

#mai n { border: 1px solid black; background: #eee; padding: 5px; margin: 0 0 0 10p

hli { font-famly: sans-serif; }
p{ font-famly: sans-serif; }

#recent upl oads { background: #aaa; border: 1px solid black; w dth: 400px }
.thunmb {
wi dt h: 100%
text-align:center; font-size: 80% font-famly:sans-serif;
border-bottom 1px solid black; }

. phot ovi ew {
text-align:center;

.userlist {
paddi ng: 5px;
text-align:center; font-weight:bold; font-famly:sans-serif;

}
.userlist td { background: #bbb; padding: 10px; }
. conment
background: #ccc; paddi ng: 10px;
font-famly: sans-serif;
mar gi n: 5px 50px 5px 50px
.info { font-weight: normal; font-size: 70%}
#t abmenu { border-bottom 2px solid black; margin: 12px 0 0 O;
paddi ng: 0; z-index:1; padding-1left: 10px;
#tabmenu 1i { display:inline; oveflow hidden; list-style-type: none; }

#tabnenu a, a.active {

26

Developing web applications with
Maypole

background: #ffa;

col or: #000;

font-size: 10pt;

font-wei ght:bold; font-fanily: sans-serif;
margi n: 0; padding: 2px 5px Opx 5px;
border-right: 1px solid #cc7;

border-top: 1px solid #cc7;

t ext - decor ati on: none;

}

#t abmenu a. active {
background: #dd8; border-bottom 3px solid #dd8;
border-left: 1px solid black

}

#t abmenu a: hover { color: #fff; background: #ac9; text-decoration:none;}
#t abnenu a. active: hover { color: #000; background: #dd8; }

#content { background: #dd8; border:2px solid black; border-top: none;
z-index: 2;margin:0; padding: 20px }

.exiftag { font-size: 8pt; background: #ffa;
.exifvalue { font-size: 9pt; background: #fff }

27

